乐音体系中各音的绝对准确高度及其相互关系叫做音律。音律是在长期的音乐实践发展中形成的,并成为确定调式音高的基础。在历史发展过程中,曾采用过各种各样的方法来确定乐音体系中各音的高度,其中主要的、为大家所熟知的有“纯律”、“五度相生律”和“十二平均律”三种。目前被世界各国所广泛采用的是“十二平均律”。但“纯律”和“五度相生律”在音乐生活中仍继续发生着影响并具有重大的意义。
十二平均律
将八度分成十二个均等的部分-半音-的音律叫做十二平均律。十二平均律早在古代希腊时便有人提出了,但并未加以科学的计算。世界上最早根据数学来制订十二平均律的是我国明朝大音乐家朱载(土育)(1854年)。
十二平均律,是指将八度的音程(二倍频程)按频率等比例地分成十二等份,每一等份称为一个半音即小二度。一个大二度则是两等份。
将一个八度分成12等份有着惊人的一些凑巧。它的纯五度音程的两个音的频率比(即2的7/12次方)与1.5非常接近,人耳基本上听不出“五度相生律”和“十二平均律”的五度音程的差别。同时,“十二平均律”的纯四度和大三度,两个音的频率比分别与4/3和5/4比较接近。也就是说,“十二平均律”的几个主要的和弦音符,都跟自然泛音序列中的几个音符相符合的,只有极小的差别,这为小号等按键吹奏乐器在乐队中使用提供了必要条件,因为这些乐器是靠自然泛音级(如前文所述,自然泛音序列,其频率是基音频率的整数倍序列,成等差数列)来形成音阶的。
半音是十二平均律组织中最小的音高距离。两音间的距离等于两个半音的叫做全音。八度内包括有十二个半音,也就是六个全音。在音列的基本音级中间,除了E到F、B到C是半音外,其余相邻两音间的距离都是全音。
在钢琴上,相邻的两个琴键(包括黑键)都构成半音,隔开一个琴键的两个音则都构成全音。
十二平均律在交响乐队和键盘乐器中得到广泛使用,因为只有“十二平均律”才能方便地进行移调。
五度相生律
根据复合音的第二分音和第三分音的纯五度关系,即由某一音开始向上推一纯五度,产生次一律,再由次一律向上推一纯五度,产生再次一律,如此继续相生年定出的音律叫做五度,产生再次一律,如此继续相生所定出的音律叫做五度相生律。
例如五度相生律所订出的七个基本音级间的音高关系,和十二平均律中七个基本音级的音高关系是不同的。虽然EF、BC之间亦为半音,但比十二平均律中的半音要小。其余相邻两音级之间虽然亦为全音,但比十二平均律中的全音要大。这种音高的差异就是由于定律方法的不同而产生的。
纯律
纯律是于五度相生律用以构成的第二分音和第三分音之外,再加入第五分音来作为生律要素,构成和弦形式。
这样便产生了七个基本音级。
根据纯律相生律中的基本音级的音高关系,又不同于十二平均律和五度相生律中的基本音级间的音高关系。它的EF、BC之间的半音比其他两种律制的半音要大。全音的情况有两种:CD、FG、AB为大全音,和五度相生律中的全音相等,比十二平均律中的全音大。ED、GA为小全音,比其他两种律制的全音都小。
前面简略地谈到了各种律制产生的方法和结果,但为什么用不同的方法定律就会产生不同的结果呢?为了说明这一问题,现以e1为例,用纯律和五度相生律的定律方法来进行一次计算。
我们已知纯律是以复合音的第二分音、第三分音和第五分音作为生律要素的,也就是说纯律大三度的振动数比应是5/4。已知振动数比,再由振动数比求得音的振动数是很容易的。
五度相生律是以复合音的第二分音和第三分音为基础,按照纯五度(3/2)的关系连续相生而得。
关于十二平均律,我们已知它是将八度分成十二个均等的部分而成,因此,除一度和八度外,其他各律的音高与纯律和五度相生律皆不相同。
三种律制在实际的应用上各有长处,五度相生律是根据纯五度定律的,因此在音的先后结合上自然协调,适用于单音音乐。纯律是根据自然三和弦而定律,因此在和弦音的同时结合上纯正而和谐,适用于多声音乐。但随着多声部音乐的发展,转调的频繁,加上键盘乐器在演奏纯律上的困难,因而受到很大限制。十二平均律在音的先后结合和同时结合上都不是那么纯正自然,但由于它转调方便,在键盘乐器的演奏和制造上有着许多优点,因此近百年来被广泛采用。